Αρχική | | | Προφίλ | | | Θέματα | | | Φιλοσοφική ματιά | | | Απόψεις | | | Σπουδαστήριο | | | Έλληνες | | | Ξένοι | | | Επιστήμες | | | Forum | | | Επικοινωνία |
PM’s Circum ex, Syntax and Philosophy of Types |
|
Συγγραφέας: Kevin C. Klement Kevin C. Klement: PM’s Circum ex, Syntax and Philosophy of Types (pdf, 31 pages) Along with offering an historically-oriented interpretive reconstruction of the syntax of PM ( rst ed.), I argue for a certain understanding of its use of propositional function abstracts formed by placing a circum ex on a variable. I argue that this notation is used in PM only when de nitions are stated schematically in the metalanguage, and in argument-position when higher-type variables are involved. My aim throughout is to explain how the usage of function abstracts as “terms” (loosely speaking) is not inconsistent with a philosophy of types that does not think of propositional functions as mind- and language-independent objects, and adopts a nominalist/substitutional semantics instead. I contrast PM’s approach here both to function abstraction found in the typed λ-calculus, and also to Frege’s notation for functions of various levels that forgoes abstracts altogether, between which it is a kind of intermediary. |
|
|